Mathematics 101 Lecture 2

1 Continuous and differentiable functions

As we said in the previous lecture, a function $f(x)$ is continous at $x=a$ means that for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
|x-a|<\delta \Rightarrow \mid f(x)-f(a)) \mid<\varepsilon \tag{1}
\end{equation*}
$$

Writing $x=a+h$ (h may be positive or negative) we may also express continuity of $f(x)$ at a as:

$$
\begin{equation*}
\lim _{h \rightarrow 0}(f(a+h)-f(a))=0 \tag{2}
\end{equation*}
$$

The expression (2) suggests a connection between differentiability and continuity. Indeed differentiability is 'continuity + smoothness' and we shall show in this lecture that differentiability of $f(x)$ at a certainly implies that $f(x)$ is continuous at a.

Example 2.1.1 Prove that the function $f(x)=x^{2}$ is continuous at every point $a \in \mathbb{R}$.

Let $\varepsilon>0$ be given. We need to find a δ which will satisfy (1). We may always assume that $\delta<1$ for if we find a δ that works for some ε, then the definition will be satisfied when we use any smaller value of δ. In general, a suitable value of δ will depend both on ε and on the particular function with which you are dealing. In practice, you may not be able to tell what a suitable value of δ might be when starting the problem, so let us explore by taking $\delta>0$ to be arbitrary for the moment and see how small the difference $|f(x)-f(a)|$ will be. Bear in mind that a denotes an arbitrary but fixed value of x. It is acceptable for our choice of δ to be dependent not only on ε but on a as well (but not on the variable x). Now, by the difference of two squares we obtain:

$$
\begin{equation*}
|f(x)-f(a)|=\left|x^{2}-a^{2}\right|=|(x-a)(x+a)|=|x-a| \cdot|x+a| \tag{3}
\end{equation*}
$$

We want to express $|x+a|$ in terms of $|x-a|$, and so we try writing $x+a=$ $x-a+2 a$ and see where that leads. By the Triangle Inequality we get:

$$
|x+a|=|x-a+2 a| \leq|x-a|+|2 a| \leq \delta+2|a| \leq 1+2|a|
$$

Hence from (3) we obtain:

$$
|f(x)-f(a)| \leq \delta(1+2|a|)
$$

Since a is fixed we now only have to choose δ so that $\delta<\frac{\varepsilon}{1+2|a|}$ and we have satisfied (1). This proves that $f(x)=x^{2}$ is continuous at an arbitrary value $x=a$, which is to say that $f(x)=x^{2}$ is continuous everywhere.

Example 2.1.2 Prove continuity of the cosine function.
Solution We use the identity $\cos A-\cos B=-2 \sin \frac{A-B}{2} \sin \frac{A+B}{2}$. For any chosen $\delta>0$, we have $-\delta<x-a<\delta$, or in other words:

$$
|x-a|<\delta \Leftrightarrow a-\delta<x<a+\delta \Leftrightarrow x=a+h \text { for some } h:-\delta<h<\delta .
$$

Hence the expression $|f(x)-f(a)|$ in the definition of continuity may take the form $|f(a+h)-f(a)|$. In this example we obtain:
$|\cos (a+h)-\cos a|=\left|-2 \sin \frac{h}{2} \sin \left(a+\frac{h}{2}\right)\right|=2\left|\sin \frac{h}{2}\right| \cdot\left|\sin \left(a+\frac{h}{2}\right)\right| \leq 2\left|\sin \frac{h}{2}\right| \leq 2 \frac{|h|}{2}=|h|<\delta$
as $0 \leq|\sin x| \leq|x|$ for all x. In particular, for a given $\epsilon>0$ we may put $\delta=\varepsilon$ and we arrive at

$$
|\cos (a+h)-\cos a|<\delta=\varepsilon
$$

thereby showing that $f(x)=\cos x$ is a continuous function.
To find the derivative of the sine function (our next example) we need the fact, proved below, that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. If we take this for granted we may solve the problem by making use of the identity:

$$
\begin{equation*}
\sin A-\sin B=2 \sin \frac{A-B}{2} \cos \frac{A+B}{2} . \tag{4}
\end{equation*}
$$

Example 2.1.3 Find the derivative of the sine function.
Solution Working from first principles we find the limit for the derivative of $\sin x$ evaluated at $x=a$. For presentational convenience we label our increment from a as $a+2 h$ rather than $a+h$. (You'll see why.) We make use of (4) in the expression for the numerator, as follows.

$$
\lim _{h \rightarrow 0} \frac{\sin (a+2 h)-\sin a}{2 h}=\lim _{h \rightarrow 0} \frac{2 \sin \frac{a+2 h-a}{2} \cos \frac{2 a+2 h}{2}}{2 h}=\lim _{h \rightarrow 0} \frac{\sin h}{h} \cos (a+h) .
$$

We now use the fact that the limit of a product is the product of the limits, that the cosine function is continuous, and that $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ to conclude that

$$
\left.\frac{d(\sin x)}{d x}\right|_{x=a}=\lim _{h \rightarrow 0} \frac{\sin h}{h} \cdot \lim _{h \rightarrow 0} \cos (a+h)=1 \cdot \cos a=\cos a
$$

In other words, the derivative of $\sin x$ is $\cos x$.

Theorem 2.1.4

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

Proof Consider a unit circle and a small angle θ. Since the vertical distance $\sin \theta$ is less than the corresponding $\operatorname{arc} \theta$ we have $\sin \theta<\theta$. Since the area of the unit circle is π, the area of the sector bounded by θ is $\frac{\theta}{2 \pi} \cdot \pi=\frac{\theta}{2}$. On the other hand the area of the enclosing triangle with vertical $\operatorname{side} \tan \theta$ as shown is $\frac{\tan \theta}{2}$. All this leads to $\sin \theta<\theta<\tan \theta$. Dividing by $\sin \theta$ now gives $1 \leq \frac{\theta}{\sin \theta}<\frac{1}{\cos \theta}$, and then taking reciprocals gives:

$$
\begin{equation*}
\cos \theta<\frac{\sin \theta}{\theta}<1 \tag{5}
\end{equation*}
$$

This shows that (5) holds for $\theta>0$. However, since $\cos (-\theta)=\cos \theta$ and $\frac{\sin (-\theta)}{-\theta}=\frac{-\sin \theta}{-\theta}=\frac{\sin \theta}{\theta}$ we see that we may replace θ by $-\theta$ in (5) and nothing changes, which is to say that (5) holds for all small values of θ. Finally, letting $\theta \rightarrow 0$ we have $\cos \theta \rightarrow 1$. Since $\frac{\sin \theta}{\theta}$ is then squeezed between 1 on the right and something approaching 1 on the left, it follows that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.

Example 2.1.5 A function $f(x)$ being continuous is no guarantee that $f(x)$ is differentiable. For example, consider the function $f(x)=|x|$. It is easy to see that $f(x)$ is both differentiable and continuous at any point $x \neq 0$. Indeed $f^{\prime}(x)= \pm 1$, with the + sign applying if $x>0$ and the minus sign applies for negative x. Also $|x|$ is continous as $x=0$. We need only put $\delta=\varepsilon$ for then $|x-0|<\delta$ says immediately that $|x|<\varepsilon$, which gives the required conclusion that $|f(x)-f(0)|=||x|-|0||<\varepsilon$. Therefore the absolute value function is continuous everywhere. However, the limit in the definition of derivative takes on differing values at $a=0$ depending on whether x approaches 0 from above (we denote this by $x \downarrow 0$) or x approaches 0 from below, (written as $x \uparrow 0$).

$$
\lim _{x \downarrow 0} \frac{|x|-|0|}{x}=\lim _{x \downarrow 0} \frac{x}{x}=1 \text {, but } \lim _{x \uparrow 0} \frac{|x|-|0|}{x}=\lim _{x \downarrow 0} \frac{-x}{x}=-1 \text {. }
$$

However, differentiablity does always imply continuity. This is simple to show although we need to use one of the rules (which will all be listed in a future lecture) that the limit of a product of two functions as $x \rightarrow a$ is the product of the limits of the functions as $x \rightarrow a$.

Theorme 2.1.6 If $f(x)$ is differentiable at $x=a$ then $f(x)$ is continuous at $x=a$. Therefore any differentiable function is continuous.

Proof We are given the existence of $f^{\prime}(a)$, which is to say that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a) . \tag{6}
\end{equation*}
$$

By putting $x=a+h$, we may re-formulate (6) as

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a) \tag{7}
\end{equation*}
$$

Now to say that $\lim _{x \rightarrow a} f(x)=f(a)$ is clearly equivalent to saying that $\lim _{x \rightarrow a}(f(x)-f(a))=0$, which is what we now verify.

$$
\begin{gathered}
\lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a}(x-a) \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a}(x-a) \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
=0 \cdot f^{\prime}(a)=0,
\end{gathered}
$$

thereby proving that $f(x)$ is continuous at $x=a$.
Our proof that $(\sin x)^{\prime}=\cos x$ is a little different from the one in most text books. The alternative method expands the expression $\sin (x+h)$ as $\sin x \cos h+$ $\cos x \sin h$ and to complete the proof you then need to evaluate the following limit, which is our final example.

Example 2.1.7

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0 \tag{8}
\end{equation*}
$$

Solution Since $1=\cos 0$ we may substitute accordingly and apply the identity for the difference $\cos A-\cos B$ to obtain:

$$
\begin{aligned}
\frac{\cos h-\cos 0}{h} & =\frac{-2 \sin \left(\frac{h-0}{2}\right) \sin \left(\frac{h+0}{2}\right)}{h}=-\frac{\sin ^{2} \frac{h}{2}}{h / 2} . \\
\therefore \lim _{h \rightarrow 0} \frac{\cos h-1}{h} & =-\lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{h / 2} \cdot \lim _{h \rightarrow 0} \sin \frac{h}{2}=-1 \times 0=0 .
\end{aligned}
$$

