Maths for Nurses: Numeracy: The Essentials

This booklet will provide an overview of the basic numeracy skills for Nursing students.

If you have any problems in answering the questions within the booklet please contact skills@library.leeds.ac.uk for personal help using the maths support drop-in sessions. Also check out these e-videos and quizzes:

- University of Leeds Maths for nurses
- Queen's University Belfast Numeracy skills for drug calculations.

Contents

1. Place Value
2. Times Tables
3. Addition
4. Multiplication
5. Subtraction
6. Division
7. Combined Functions
8. Converting Weights and Volumes
9. Fractions \& Decimals
10. Basic Drug Calculations
11. Percentages

Acknowledgement: The original document was designed and produced by Queen's University Belfast, Student Guidance Centre

UNIVERSITY OF LEEDS

1. Place value

| | |
| :--- | :--- | :--- | :--- | :--- |

To move digits one column to the left e.g. Units to Tens, you x 10.
To move digits one column to the right, e.g. Hundreds to Tens, you $\div 100$
Example: if we multiply the following number by 10

\mathbf{H}	\mathbf{T}	\mathbf{U}	.	\mathbf{t}	\mathbf{h}
	2	3	.	4	5

it becomes:

\mathbf{H}	T	U	.	\mathbf{t}	h
2	3	4	.	5	

Note what has happened to the digits. The number 23.45 has become 234.5 , each digit moving 1 place to the left..

The digits move	1	place to the	left	when multiplying		by	10
The digits move	2	places to the	left	when multiplying	by	100	
The digits move	3	places to the	left	when multiplying		by	1000
The digits move	1	place to the	right	when dividing	by	10	
The digits move	2	places to the	right	when dividing	by	100	
The digits move	3	places to the	right	when dividing	by	1000	

Ordering Numbers

To determine the highest number start from the left and go through each place value selecting the highest digit(s) until just one number is left.
15.18
15. 18
14.94
14.94
15.3
15.3
15.3
15.18
14.09
14.09

Examples to try; find the lowest number in the following questions:
(a)
(i) 87.87
(b)
(i) 0.23
(c) (i) 624.01
(ii) 87.97
(ii) 0.2
(ii) 642.01
(iii) 88.07
(iii) 0.32
(iii) 624.0
(iv) 88.1
(iv) 0.3
(iv) 624.1
2. Times Tables

| \boldsymbol{X} | $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| $\mathbf{4}$ | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| $\mathbf{6}$ | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| $\mathbf{7}$ | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| $\mathbf{8}$ | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| $\mathbf{9}$ | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| $\mathbf{1 0}$ | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| $\mathbf{1 1}$ | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| $\mathbf{1 2}$ | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

TIPS

Try learning by rote as many as you can and then use what you know to work out what you don't know.
5 times tables always end in either 5 or 0
You can use your fingers for 9 times tables:
. Hold your hands in front of you with your fingers spread out.
. For 9×3 bend your third finger down. (9×4 would be the fourth finger etc.)
\square You have 2 fingers in front of the bent finger and 7 after the bent finger
. Thus the answer must be 27!
Alternatively for the 9 times tables use the 10 times tables and subtract one lot of the number you are multiplying by..
To work out the 4 times tables double and double again.
Knowing how to square numbers is useful ie
$1 \times 1=\mathbf{1}, 2 \times 2=4,3 \times 3=9,4 \times 4=\mathbf{1 6}, 5 \times 5=\mathbf{2 5}, 6 \times 6=\mathbf{3 6}, 7 \times 7=49,8 \times 8=\mathbf{6 4}, 9 \times 9=\mathbf{8 1}, 10 \times 10=\mathbf{1 0 0}$
It's useful to know that $\times 12$ is the same as $\times 10$ and $\times 2$ and adding the two results.
One of the best interactive web resources for times tables is BBC Skillswise:
http://www.bbc.co.uk/skillswise/numbers/wholenumbers/multiplication/timestables/index.shtml

Examples to try; using the table above or otherwise, calculate the following:
(a) 9×8
(b) 7×12
(c) 6×9
(d) 4×7
(e) 5×11
(f) 3×8
(g) 11×12

3. Addition

Keep the decimal point in the same place.
If you get a number greater than 10 then write down the number of units and carry the number of tens over to the next column on the left.
e.g.

89	$9+5=14$
+15	

Examples to try:
(a)
(b)
(c)

37.4	INPUT: I.V. Fluids	1300	OUTPUT:	Urine 1250
+ 78.9	Oral Fluids	+275		Vomit 100
			Wound	+45

4. Multiplication

Ignore the decimal point until the end. The rule is that you count the number of decimal places in your question and apply the same number to the answer.
Carry over tens as before.
\square If multiplying by a number with two or more digits, treat them separately, remembering to put one zero on the far right column when multiplying by tens, two zeros for hundreds etc.
e.g.

Examples to try:
(a) A patient is to receive 2.5 micrograms per kilogram. What dose is required if the patient weighs 79 kilograms?
(b) If one tablet contains 20 milligrams, how many milligrams would 4 tablets contain?

5. Subtraction

Keep the decimal point in the same place.. Borrow 1 from the column on the left if necessary.
e.g. ${ }^{6} 7^{1} 2$. ${ }^{1} 6$
24.9
$-\quad 27.7$ 47.7

Examples to try:
(a) Jamie weighed 4.2 kilograms at birth. By week 2 his weight had dropped to 3.8 kilograms. How much weight had he lost in grams?
(b) What is the difference in kg between 1.6 kilograms and 825 grams?

6. Division

Keep the decimal point in the same place.
Divide into each digit in turn, from left to right. e.g. $8 \frac{1^{1} 2^{4} 0}{015}$

Carry over tens if applicable.
If dividing by decimals then make into whole numbers by multiplying.
e.g. $20 \div 3.2$ is $\frac{20}{3.2}=\frac{200}{32}=\frac{100}{16}=\frac{50}{8}=\frac{\mid 25}{4}=4 \not 2^{2} 5 .{ }^{1} 0^{2} 0$

Simplify fractions by halving (if even), or try \div by 3,5 , or 7 . This should reduce the need for long division.

Furthermore, the same number of zeros can be removed in top and bottom numbers in the fraction to aid simplification.

Examples to try:
(a) $225 \div 6$
(b) $1500 \div 250$
(c) $1000 \div 8$

7. Combined

Question: A baby is to be fed 75 ml every 3 hours. How much is this per day?
Solution: 24 hours in a day, so there are $24 \div 3=8$ feeds per day.
The total amount is $8 \times 75=600 \mathrm{ml}$.

Examples to try:
(a) If 5 ml contains 100 mg , how many mg would there be in 20 ml ?
(b) If a patient is to receive 1500 ml over 24 hrs , how much is this in $\mathrm{ml} / \mathrm{hr}$?

8. Converting Weights and Volumes

a) Metric to metric

The following diagram can help remind you whether to x or \div.
Put in order from largest to smallest, then draw an arrow down with $\div 1000$ beside it, and an arrow up with $\times 1000$ beside it.

Examples to try:
(a) 45 grams to kilograms
(b) 0.75 grams to milligrams
(c) 0.025 milligrams to micrograms
(d) 650 ml to litres Note: $\mathbf{1}$ litre (I) = $\mathbf{1 0 0 0}$ millilitres ($\mathbf{m l}$)
b) Metric to imperial and imperial to imperial

1kilogram (kg) $=2.2$ pounds (lb)
1 stone (st) = 14 pounds (lb)
1 pound (lb) = 16 ounces $(o z)$
Question: A child weighs 2 stone 3lb, what is this weight in kg ?
Solution: 2 stone $=2 \times 14 \mathrm{lb}=28 \mathrm{lb} \quad$ So the child weighs $(28+3) \mathrm{lb}=31 \mathrm{lb}$
Total weight in $\mathrm{kg}=31 \div 2.2=\frac{31}{2.2}=\frac{310}{22}=\frac{155}{11}=11 \underline{155.00}$
14.1 kg (approximately)

Examples to try:
(e) 3 stone 10 lb to kilograms
(f) 2 stone 4 lb to kilograms

9. Fractions \& Decimals

Learn the following fractions:
$1 / 10=0.1 \quad$ Therefore $\quad 6 / 10=6 \times 0.1=0.6$
$1 / 100=0.01 \quad 3 / 100=3 \times 0.1=0.03$
$1 / 5=0.2 \quad 4 / 5=4 \times 0.2=0.8$
$1 / 4=0.25 \quad 3 / 4=3 \times 0.25=0.75$
$1 / 3=0.33$ (recurring) $\quad 2 / 3=2 \times 0.33=0.66$
$1 / 2=0.5$
$\frac{2}{5}$ of $250=\frac{2}{5} \times \frac{250}{1}=\frac{500}{5}=100$
Note: You could simplify the fractions first by \div top and bottom by 5 and then workout $2 \times 50=100$.

When rounding decimals to 1 decimal place, look at the second d.p. and if it is 5 or above then round up, if less than 5 then keep it the same.

For example: $1.274=1.3$ to 1 d.p. $\quad 1.234=1.2$ to 1 d.p.
When adding decimals, keep d.p. in the same place.
When multiplying decimals, count the number of d.p.'s in the question and apply the same to the answer.

Examples to try:
(a) Find $4 / 10$ of 42
(b) Find $3 / 4$ of 420
(c) Find $1 / 3$ of 39.6
Write the following to $1 \mathrm{~d} . \mathrm{p}$.
(d) 3.333
(e) 0.657
(f) 23.97

10. Basic Drug Calculations

Use the following formula:
$\frac{\text { Dose required }}{\text { Dose available }} \times \frac{\text { Volume }}{1}$ or
e.g. 240 milligrams is prescribed. The stock dose is 120 milligrams $/ 5 \mathrm{ml}$. What volume would you give?
$\frac{\text { what you want }}{\text { what you have got }} \times \frac{\text { what it is in }}{1}$
Solution: $\quad \frac{240}{120} \times \frac{5}{1}=2 \times 5=10 \mathrm{ml}$

Examples to try:
(a) 6 milligrams is required. Stock is 10 milligrams $/ 4 \mathrm{ml}$. What volume is required?
(b) A patient required 10000 units. Stock is 25000 units/ml. What volume is required?

11. Percentages

- Always out of 100
.. As a decimal, $0.1=0.10=10 \%$ and $0.06=6 \%$ (use the hundredths column to determine value)
30% of $150=\frac{30}{100} \times \frac{150}{1}=\frac{3}{10} \times \frac{150}{1}=\frac{3}{1} \times \frac{15}{1}=45$
Examples to try:
(a) Work out 20% of 65
(b)(i) A patient is to receive IV Fluids over 8 hours. What \% would be administered after 6hrs?
(b)(ii) How long would it take to administer 50% ?

Answers

1. Place Value
(a) (i) 87.87
(b) (ii) 0.2
(c) (iii) 6240
2. Times Tables
(a) 72
(b) 84 (c) 54
(d) 28
(e) 55 (f) 24
(g) 132
3. Addition
(a) 116.3
(b) 1575
(c) 1395
4. Multiplication
(a) 197.5 milligrams
(b) 80 milligrams
5. Subtraction
(a) 400 grams (b) 775 grams
6. Division
(a) 37.5
(b) 6
(c) 125
7. Combined
(a) 400 milligrams
(b) $62.5=63 \mathrm{ml} / \mathrm{hr}$
8. Converting Weights and Volumes
(a) 0.045 kilograms
(b) 750 milligrams
(c) 25 micrograms
(d) 0.65 litres
(e) 23.6 kg (f) 14.5 kg
9. Fractions \& Decimals
(a) 16.8
(b) 315
(c) 13.2
(d) 3.3
(e) 0.7
(f) 24.0
10. Basic Drug Calculations
(a) 2.4 ml
(b) 0.4 ml
11. Percentages
(a) 13
(b) 75%
(c) 4 hours
