MA181 Week 2 Problems

Lecture 1 Additional Problems

Question 1

Let $A = \{-3, -1, 0, 1, 2, 5\}$ and $B = \{-1, 3, \pi, 5\}$. Calculate the following: -

 $A \cup B;$ (i) (ii) $A \cap B;$ $A \backslash B;$ (iii) (iv) $A \triangle B;$ (v) |A|;|B|;(vi) $|A \times B|;$ (vii) (viii) $A \times B$.

Question 2

Let $\mathcal{U} = \{x^2 : x \in \mathbb{N} \text{ and } x \leq 7\}$ and $C = \{4, 9, 16\}$. Calculate: -

- (i) $\mathcal{U};$
- (ii) $\overline{C};$
- (iii) $|\mathcal{U}|;$
- (iv) $|\overline{C}|;$
- (v) $\overline{C} \times \overline{C}$.

Question 3

What relation must hold between sets A and B for the following to be true: -

(i)	$A \cap B = A;$
-----	-----------------

- (ii) $A \cup B = A;$
- (iii) $\bar{A} \cup \mathcal{U} = \emptyset;$
- (iv) $\overline{A \cap B} = \overline{B}.$

Lecture 2 Additional Problems

Question 4

Draw a Venn daigram to illustrate $A \triangle (B \triangle C)$. Is the symmetric difference associative? Explain your answer.

Question 5

Use the Laws of Algebra for Sets to prove that $\overline{(\overline{A} \cap B)} \cap (A \cup B) = A$. State the dual identity.

Week 2 Homework Questions

Question 6

For this question the universal set $\mathcal{U} = \{1, 2, 3, ..., 10\}$. Let $A = \{1, 4, 7, 10\}$, $B = \{1, 2, 3, 4, 5\}$ and $C = \{2, 4, 6, 8\}$. Write down explicitly the sets: -

- (i) $A \cup B;$
- (ii) $A \cap C;$
- (iii) A-B;
- (iv) $\overline{\mathcal{U}};$
- (v) $(A \cup B) (C B).$

Question 7

Declare each of the following true or false and if false explain your reasoning: -

- (i) $\{x\} \subset \{x\};$
- (ii) $\{x\} \in \{x, \{x\}\};$
- (iii) $\{x\} \in \{x\};$
- (iv) $\{x\} \subseteq \{x, \{x\}\};$

(v)
$$A \times B = B \times A;$$

(vi)
$$\overline{A-B} = \overline{B-A};$$

(vii) $A \cap (B \setminus C) = (A \cap B) - (A \cap C);$

(viii)
$$\mathcal{P}(\emptyset) = \{\emptyset\};$$

(ix) $A - (B \cup C) = (A - B) \cup C.$

Question 8

Use the Laws of Algebra for Sets to prove that $(\mathcal{U} \cap A) \cup (B \cap A) = A$, where $A, B \subseteq \mathcal{U}$. State the dual identity.

Question 9

Let $A = \{1, a, x\}, B = \{1, b\}$. Write down explicitly the sets: -

- (i) $A \times B;$
- (ii) $B \times A;$
- (iii) $(A \times B) (B \times A).$