MA181 Discrete Mathematics

Lecture 2 — Set Laws

Let A, B and C' denote arbitrary sets. Sets obey the following laws, all of which, with
the possible exceptions of Laws 4 and 10, are (fairly) obvious.

Laws of Algebra of Sets
1. Idempotent Laws:
laAUA=A 1bANA=A
2. Associative Laws:
2a (AUB)UC =AU(BUC) 2a(ANnB)NC=An(BNC).
3. Commutative Laws:
3aAUB=BUA 3bANB=BNA
4. Distributive Laws:
da AU(BNC)=(AUB)N(AUC) 4b AN(BUC)=(ANB)U(ANC).
5 & 6. Identity Laws:
S5a AUD=A BbANU=A 6aAUU=U 6bAND=10.
7. Involution Law: (A°)°= A .
8 & 9. Complement Laws:
8a AUA=U 8 ANA=0 9allc=0 9b @ =U.
10. De Morgan’s Laws:

10a (AU B)° = A°N B¢ 10b (AN B)° = A°U B°.



In order to convince oneself of a statement of equality of two sets (i.e. that they are
the same thing) it is often a good idea to represent the expressions involved by means
of Venn Diagrams. However, any real proof that two sets X and Y are equal must be
verified by showing that every element x in X is also in Y (this shows that X C Y') and
likewise every element of Y also lies in X (thus showing that ¥ C X and so X =Y).

Example 2.1

With this in mind let us verify one of the less obvious laws, Law 4a:

AU(BNC)=(AUB)N(AUC) (1)
First, let z € AU(BNC),soz € Aorx € BNC. This gives us two cases to test:

(i) fz € Athenz e AUBandx € AUC sothat z € (AUB)N(AUC).

(ii) If z € BNC then x € B and so x € AU B; similarly x € AU C.

Hence z € (AU B) N (AU C) and so the LHS (left-hand side) of (1) is a subset of the
RHS.

Conversely, let z € (AUB)N(AUC). Then x € AU B and z € AU C which is the
same as saying that x € A or B and x € A or C'. Once more we split this up into two
cases:

(i) If x € A then certainly x € AU(BNCO).

(ii) If x ¢ A then it must be the case that © € B and x € C; that is to say z € BNC.

Hence in either case, v € AU (BN C), and so the RHS of (1) is a subset of the LHS.

These two paragraphs together prove that equation (1) is always true for any sets A, B,
and C. Since this is the case we say that (1) is an identity.

There is a definite symmetry about the 10 Set Laws that is well worth appreciating.
Let E be an equation of set algebra. By the dual equation E* we mean the equation
obtained form E by replacing each occurrence of the symbols U, N, U, by N, U, 0,U
respectively. Note that (E*)* = E: the dual statement of a dual statement is the
original statement. Hence to say that E* is the dual of E is equivalent to saying that
E is the dual of E*: in language you will later become familiar with we say that duality



is a symmetric relation. Law 7 is merely a statement about complements but all the
other Laws occur in dual pairs. The upshot of this is that theorems about sets usually
come in pairs.

Principle of Duality Let E be a statement of inclusion or equality of sets involving
only the operations of union, intersection and complementation. Then the statement
E* obtained by interchanging unions with intersections, I/ with ), and reversing all
inclusions is true if £ is true and is false if F is false.

The reason why the Principle holds is that, given any proof of a statement E we can
turn it into a proof of E* by use of the dual Law at each stage: for example, if at one
line in the proof for F we use Law 4a then at the corresponding stage in the proof for
E* we would use Law 4b.

The operations of union, intersection and complementation of sets are often referred to
as boolean operations (named after George Boole). The question of deciding whether
or not two boolean expressions represent the same set is in general extremely difficult,
although drawing Venn diagrams can help if the expressions do not involve too many
sets. We can use the Set Laws however to avoid laboriously testing whether an arbitrary
member of the LHS is also a member of the RHS and vica-versa, allowing us to give a
very clear formal demonstration of the truth of an identity.

Example 2.1 Use the Set Laws to prove that:

(ANB)U(B°NA)=A (2)

and state the dual proposition.

Proof

(ANB)U(B°NA)=(ANB)U(ANB°) law (3b)
=AN(BUB° law(4b)
=ANU law (8a)
=A law (5b).

Dual: (AUB)N(B°UA) = A.



