MA181 Discrete Mathematics

Lecture 1 — Sets

These lecture notes contain what is most important in each lecture and should be read prior
to the lecture. They do however represent only the bare bones. During the lecture itself the
content will be augmented with additional examples and explanations about which you may
wish to make some supplementary notes of your own.

This course introduces the mathematical ideas with which anyone studying a modern com-
puting or mathematics degree needs to be familiar. The context in which much of modern
maths finds itself is that of Sets, and the theory of Sets carries with it its own language
which takes some getting used to. For this reason there is a Glossary of Set Theory Symbols
that will arise in the course on the back of the first problem sheet. The underlying ideas the
symbols represent are however pretty simple.

A set is any collection of objects referred to as elements or members of the set. Sets are
generally denoted by capital letters: A, B, S, X etc. while elements are usually denoted by
lower case letters: a,b,c¢,---,z,y etc. The statement ‘a is an element of A’ is denoted by
a € A; the negation of this is written o € A. Two sets A and B are said to be equal if, and

only if, they have the same members, in which case we write A = B.

There are two ways of specifying a set. We may explicitly define a set by writing down all of
its members; for example

A={-1,1}

On the other hand we may implicitly define a set by specifying that it consists of all objects
which satisfy a certain property or properties:

B = {z : z is an integer and z* = 1}.

Note that in this case it has turned out that A = B.

You should note the use of curly brackets when presenting a set. The set {1, 2} is not the same
as the ordered pair (1,2) (an idea that we shall explain more carfully later in the lecture).



The order in which the elements happen to be listed is of no account when speaking of a set:
the sets { Peter, Paul} and { Paul, Peter} are the same because they have the same members.

Many of the examples we shall use to illustrate ideas will involve sets of numbers because
they are simple to produce but in the real computational world the sets that people are
liable to be concerned with have objects of many varied abstract kinds. They are still sets
nonetheless and so questions about membership of these sets must be asked and answered
using the standard terminology which we are introducing here.

Implicit definition of sets is extremely important but pre-supposes that we already have some
context from which we may draw members. In any application of set theory the members of
all sets of interest are considered to come from some set U, the universal set. This universe of
discourse can itself vary — it depends entirely on the kind of things we may wish to consider.
At the other extreme the empty set or null set is the set with no elements, denoted by §, or
by {}. The empty set should not be confused with the number 0 (which is the number of
elements in 0). :

A set A is a subset of a set B if each element of A is also an element of B; we denote this by

A C B and write A € B to denote the corresponding negation. If A C B and A # B we say
that A is a proper subset of B.

Set Operations

The union of two sets A and B, denoted by AU B is
AUB={z:z€Aorze B}

We use the word ‘or’ to mean and/or, sometimes called inclusive or, and this is the standard
usage in mathematics.

The intersection of A and B, denoted AN B, is the set of all elements common to both sets:
AnNB={z:ze€ A and z € B}.
Example 1.1 A ={-1,0,1,2}, B ={1,2,4}. Then
AUB ={-1,0,1,2,4}, AnB={1,2}.

Note that sets never contain repeats: an element is either in a set or not — it cannot be a
member several times over!



The number of elements in a set A is called the cardinality of A and is denoted by |A|. For
instance, for the set A above we have |A| = 4.

The complement of a set A, denoted by A° or by A, is the set of all elements of &/ which are
not in A. For instance the complement of the set of vowels is the set of consonants (where
the universal set here is, of course, the alphabet). The difference of sets B and A, in that
order, denoted by B\A or by B — A, is the set of all elements that are in B but not in A:

B\A={z:z€ B, z ¢ A}.

This is sometimes also called the relative complement of A in B - this is because if we take
B = U we get U — A: the complement of A in U which is the complement of A as introduced
in the preceding paragraph. With the sets A and B as in the previous example we have:

B\A = {4}; A\B={-1,0}.

The use of the notation A— B for difference is fine, but always bear in mind its true meaning:
it has nothing to do with ordinary subtraction. Never be tempted to write A + B when
discussing sets as the plus sign has no meaning in this context.

Sets are often pictured as overlapping regions within one universal box and these drawings
are called Venn Diagrams. Those illustrating the ideas already introduced are pictured below:




The idea of ezclusive or (you may have a biscuit or a cake but not bothl) can be expressed in
the context of sets. The symmetric difference of two sets A and B, denoted A A B, consists
of all elements contained in one of the sets A and B but not both:

AAB={z:z€ Aorze€ B but not both }.

We now have the notation to express this more succinctly, it fact we can do this in two
equivalent ways:

AAB=(A-B)U(B-A)=(AUB) - (AN B)

AAD

For the sets of Example 1.1 you should check that A A B = {:1, 0,4}.
Two sets A and B are digjoint if they have no elements in common: that is to say ANB = §.

If A and B are sets then an ordered pair from A and B (in that order) is a pair of elements
{(a,b) where a € A and b € B. The collection of all ordered pairs from A and B is known as
the direct product or cartesian product (after Rene Descartes) of A and B. This set is denoted
by A x B. For example if A = {-1,1,3} and B = {-1,1} then:

Ax B={(-1,-1),(-1,1),(1,-1),(1,1),(3,-1), (3, 1) }.

The idea of an ordered pair you will surely have met before — in school mathematics or
indeed in geography - the latitude and longtitude of a point on the globe is an ordered
pair. The direct product is just the collection of all ordered pairs under consideration. The x
notation does not of course mean multiply. There is a connection with multiplication however
through the cardinality of the set A x B which does equal |A| x |B|: in the above example
|A] = 3,|B]| = 2 and the direct product A x B does indeed consist of 2 x 3 = 6 ordered pairs.

Note that, as opposed to sets, an ordered pair may have a repeat (for example the pair (1,1)
in the above example) and that, since order is an integral part of an ordered pair, the ordered
pairs (—1,1) and (1,—1) are different ordered pairs, although the sets {-1,1} and {1,-1}
are equal.



Our first glossary of set theory notation (more to come later)

€: element symbol, a € A means ‘a is an element of A’.
C: subset symbol, A C B is read ‘A is a subset of B’.

AUB = {z:z € A or z € B} means ’the set of all z such that z is an element of A or z is
an element of B’.

ANB={z:2z€ Aand z € B}.

A¢ = A" = A is the complement of A,s0 A= {z:z ¢ A}.

A\B=A-~B=ANB.

U: the universal set.

#: the empty or null set.

A A B: the symmetric difference of A and B, which is equal to (AN B)U (AN B).
[A]: the cardinality of the set A, which the number of elements in A.

A x B: the Cartesian product or direct product of A and B, which is the set {(a,b) : a €
A,be B}.



