Mathematics 101 Problem Set 1 Solutions

1(a) Show from First principles that any constant function $f(x)=C$ satisfies $f^{\prime}(x)=0$ (meaning that $f^{\prime}(x)$ is the zero function).
(b) Find necessary and sufficient conditions on a, b, c, and d to ensure that

$$
f(x)=\frac{a x+b}{c x+d}
$$

is a constant function.
(c) By polynomial division show that

$$
f(x)=\frac{a}{c}+\frac{b c-a d}{c(c x+d)}
$$

and hence draw the same conclusion as in (b). What is

$$
\lim _{x \rightarrow \infty} \frac{a x+b}{c x+d} ?
$$

(d) Find the equation of the inverse function $f^{-1}(x)$, where $f(x)$ is as in 1(b).

Solution (a)

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{C-C}{h}=\lim _{h \rightarrow 0}(0)=0 .
$$

(b) $f(x)$ will be constant if and only if $f^{\prime}(x)=0$, which is to say, using the Quotient rule of differentiation:

$$
\frac{a(c x+d)-c(a x+b)}{(c x+d)^{2}} \equiv 0 \Leftrightarrow \frac{a d-b c}{(c x+d)^{2}} \equiv 0 \Leftrightarrow a d=b c .
$$

Comment: the symbol \equiv here means 'is identically equal to'. This emphasises that $f(x)=0$ for all values of x, distinguishing it from an equality in an equation such as $2 x+3=8$, which is true only for some values of x.
(c) The first line in the division gives the quotient of $\frac{c}{a}$ and then by subtraction we obtain:

$$
f(x)=\frac{c}{a}+\frac{b c-a d}{c(c x+d)} .
$$

Written in this form we see that $f(x)$ is constant if and only if $a d-b c=0$, in which case $f(x) \equiv \frac{c}{a}$ for all x. We should check what happens if $a=0$. In that case $f(x)=\frac{b}{c x+d}$ and then $a d=0$ implies $b c=0$, whence either $b=0$ (in which case $f(x) \equiv 0$) or $c=0$, in which case $f(x) \equiv \frac{b}{d}$. Also

$$
\lim _{x \rightarrow \infty} \frac{a x+b}{c x+d}=\lim _{x \rightarrow \infty} \frac{a+\frac{b}{x}}{c+\frac{d}{x}}=\frac{a+0}{c+0}=\frac{a}{c} .
$$

(d) To find the rule for the inverse function, we solve $y=f(x)$ for x, which in this case gives:

$$
\begin{gathered}
y(c x+d)=a x+b \Leftrightarrow x(a-c y)=d y-b \Rightarrow x=\frac{d y-b}{a-c y} . \\
\therefore f^{-1}(x)=\frac{d x-b}{a-c x} .
\end{gathered}
$$

2(a) Find a function $f(x)$ such that:

$$
f(2 x+3)=x^{2}+1
$$

[Hint: we have an equation of the form $f(g(x))=h(x)$ and we want $f(x)$, so replace x by $g^{-1}(x)$ as then we get $f(x)=h\left(g^{-1}(x)\right)$.]
(b) Find a linear function $f(x)=a x+b$ such that $f(f(x))=2 x+1$.

Solution (a) Taking the hint, we note that here $g(x)$ is the function $y=$ $2 x+3$. Inverting gives $x=\frac{y-3}{2}$ so that $g^{-1}(x)=\frac{1}{2} x-\frac{3}{2}$. We then replace x by $g^{-1}(x)$ in $f(2 x+3)$ and this gives:

$$
\begin{gathered}
f(x)=\left(\frac{1}{2} x-\frac{3}{2}\right)^{2}+1=\frac{1}{4} x^{2}-\frac{3}{2} x+\frac{9}{4}+1 \\
\therefore f(x)=\frac{1}{4} x^{2}-\frac{3}{2} x+\frac{13}{4} .
\end{gathered}
$$

Check:

$$
\begin{aligned}
& f(2 x+3)=\frac{1}{4}(2 x+3)^{2}-\frac{3}{2}(2 x+3)+\frac{13}{4} \\
& =x^{2}+3 x+\frac{9}{4}-3 x-\frac{9}{2}+\frac{13}{4}=x^{2}+1
\end{aligned}
$$

(b)

$$
\begin{gathered}
f(f(x))=a(a x+b)+b=2 x+1 \\
\Rightarrow a^{2} x+b(1+a)=1
\end{gathered}
$$

Equating coefficients gives $a^{2}=2$ so that $a= \pm \sqrt{2}$. Then

$$
b=\frac{1}{1+a}=\frac{1}{1 \pm \sqrt{2}}=\frac{1 \mp \sqrt{2}}{(1 \pm \sqrt{2})(1 \mp \sqrt{2})}=\frac{1 \mp \sqrt{2}}{1-2}= \pm \sqrt{2}-1 .
$$

$$
\therefore f(x)=\sqrt{2} x+\sqrt{2}-1 \text { or } f(x)=-\sqrt{2} x-(\sqrt{2}+1) .
$$

Check: (2nd solution)
$f(f(x))=-\sqrt{2}(-\sqrt{2} x-\sqrt{2}-1)-\sqrt{2}-1=2 x+2+\sqrt{2}-\sqrt{2}-1=2 x+1$.
3. Find from First Principles the derivatives of the functions with the following rules:
(a) $2 x+1$;
(b) $1-x^{2}$;
(c) $\frac{1}{1+x}$.

Solutions (a) Let $f(x)=2 x+1$. Then

$$
\begin{gathered}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{2(a+h)+1-(2 a+1)}{h}=\lim _{h \rightarrow 0} \frac{2 a+2 h+1-2 a-1}{h}=\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2 . \\
\therefore f^{\prime}(x) \equiv 2
\end{gathered}
$$

(b)

$$
\begin{gathered}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\left(1-(a+h)^{2}\right)-\left(1-a^{2}\right)}{h}=\lim _{h \rightarrow 0} \frac{1-a^{2}-2 a h-h^{2}-1+a^{2}}{h}=\lim _{h \rightarrow 0} \frac{-2 a h-h^{2}}{h} \\
=-\lim _{h \rightarrow 0}(2 a+h)=-2 a .
\end{gathered}
$$

$$
\therefore f^{\prime}(x)=-2 x .
$$

(c)

$$
\begin{gathered}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\frac{1}{1+a+h}-\frac{1}{1+a}}{h}= \\
\lim _{h \rightarrow 0} \frac{1+a-1-a-h}{h(1+a)(1+a+h)}=-\lim _{h \rightarrow 0} \frac{1}{(1+a)(1+a+h)}=-\frac{1}{(1+a)^{2}} . \\
\therefore f^{\prime}(x)=-\frac{1}{(1+x)^{2}} .
\end{gathered}
$$

4. Find the equations of the two tangents to the curve $y=x^{2}$ that pass through the point $(2,0)$.

Each tangent line L has an equation of the form $y-y_{0}=m\left(x-x_{0}\right)$, where $\left(x_{0}, y_{0}\right)$ is an point on the line. Since L passes through $(2,0)$ we thus have $y-0=y=m(x-2)$. Also L, since it is a tangent, touches the curve at some point $P\left(a, a^{2}\right)$. The slope m of L matches the gradient of the curve at P, so that $m=2 a$, and also, since the tangent passes through $P, a^{2}=m(a-2)$. This gives $a^{2}=2 a(a-2)$, so either $a=0$ or

$$
a=2(a-2) \Rightarrow a=2 a-4 \Rightarrow a=4
$$

Therefore L is given by either $y=0$ (the x-axis) or

$$
y=8(x-2) \Leftrightarrow y=8 x-16
$$

5. Find the derivative of the cosine function from First Principles.

Solution

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\cos (a+h)-\cos a}{h}=\lim _{h \rightarrow 0} \frac{\cos a \cos h-\sin a \sin h-\cos a}{h}=\lim _{h \rightarrow 0} \frac{\cos a(\cos h-1)-\sin a \sin h}{h} \\
& =\cos a \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin a \lim _{h \rightarrow 0} \frac{\sin h}{h}=(\cos a)(0)-\sin a(1)=-\sin a .
\end{aligned}
$$

Alternatively,

$$
\begin{gathered}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\cos (a+h)-\cos a}{h}=\lim _{h \rightarrow 0} \frac{-2 \sin \left(a+\frac{h}{2}\right) \sin \frac{h}{2}}{h} \\
=-\lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{h / 2} \cdot \lim _{h \rightarrow 0} \sin \left(a+\frac{h}{2}\right)=-1 \cdot \sin a=-\sin a . \\
\therefore f^{\prime}(x)=-\sin x .
\end{gathered}
$$

6. Prove that $f(x)=c x+d(c, d \in \mathbb{R}, c \neq 0)$ is continuous by taking $\delta=\frac{\epsilon}{|c|}$ in the definition of continuity.

Solution Suppose $|x-a|<\delta=\frac{\epsilon}{|c|}$. Then

$$
\begin{gathered}
|f(x+a)-f(x)|=|c(x+a)+d-(c x+d)|=|c x+c a+d-c x-d| \\
=|c(a-x)|=|c| \cdot|x-a|<|c| \cdot \frac{\varepsilon}{|c|}=\varepsilon,
\end{gathered}
$$

as required to show that $f(x)=c x+d$ is continuous everywhere.
7. Solve the following inequalities:
(a) $\frac{x-1}{1-3 x}>7$;
(b) $|3 x-4| \leq 20$;
(c) $|-2(1-5 x)|>8$.

Solutions

(a)

$$
\begin{gathered}
\frac{x-1}{1-3 x}>7 \Rightarrow(x-1)(1-3 x)>7(1-3 x)^{2} \Leftrightarrow(1-3 x)((x-1)-7(1-3 x))>0 \\
(1-3 x)(x-1-7+21 x)>0 \Leftrightarrow(1-3 x)(22 x-8)>0 \\
\Leftrightarrow(3 x-1)(11 x-4)<0
\end{gathered}
$$

The quadratic on the left has roots $x=\frac{1}{3}$ and $x=\frac{4}{11}>\frac{1}{3}$. Hence the inequality is satisfied strictly between these roots, that is

$$
\frac{1}{3}<x<\frac{4}{11}
$$

(b) We re-write $|3 x-4| \leq 20$ as

$$
\begin{gathered}
-20 \leq 3 x-4 \leq 20 \\
\Leftrightarrow-16 \leq 3 x \leq 24 \\
-\frac{16}{3} \leq x \leq 8
\end{gathered}
$$

(c)

$$
\begin{gathered}
|-2(1-5 x)|=|2(5 x-1)|=|2| \cdot|5 x-1|=2|5 x-1|>8 \Leftrightarrow|5 x-1|>4 \\
\Leftrightarrow 5 x-1<-4 \text { or } 5 x-1>4 \\
\Leftrightarrow 5 x<-3 \text { or } 5 x>5 \\
\Leftrightarrow x<-\frac{3}{5} \text { or } x>1 .
\end{gathered}
$$

8. Given that $|x-2| \leq 3$ and $|y+2|<1$, what is the set of all possible values of $2 x+3 y$?

Solution

$$
\begin{gathered}
|x-2| \leq 3 \Leftrightarrow-3 \leq x-2 \leq 3 \Leftrightarrow-1 \leq x \leq 5 \Leftrightarrow-2 \leq 2 x \leq 10 \\
|y+2|<1 \Leftrightarrow-1<y+2<1 \Leftrightarrow-3<y<-1 \Leftrightarrow-9<3 y<-3 \\
\therefore-11<2 x+3 y<7
\end{gathered}
$$

9. Find all values of x such that

$$
|x|+|-5 x|=10
$$

Solution

$$
\begin{gathered}
|x|+|-5 x|=|x|+|-5| \cdot|x|=|x|+5|x|=6|x|=10 \\
\Rightarrow|x|=\frac{10}{6}=\frac{5}{3} \\
\therefore x= \pm \frac{5}{3} .
\end{gathered}
$$

10. Solve

$$
|2 x+1|=1+|1-3 x| .
$$

Solution

$$
\begin{gathered}
2 x+1= \pm(1+|3 x-1|) \\
\Leftrightarrow\left(x \geq \frac{1}{3} \& 2 x+1= \pm(1+3 x-1)= \pm 3 x \text { or } \left.x \leq \frac{1}{3} \& 2 x+1= \pm(1-3 x+1)= \pm(2-3 x) \right\rvert\,\right. \\
\Leftrightarrow\left(x \geq \frac{1}{3} \&\left(x=1 \text { or } x=-\frac{1}{5}\right)\right) \text { or }\left(x \leq \frac{1}{3} \&\left(x=\frac{1}{5} \text { or } x=3\right)\right. \\
\Leftrightarrow x=1 \text { or } x=\frac{1}{5} .
\end{gathered}
$$

