Mathematics 101 Problem Set 1

1(a) Show from First principles that any constant function $f(x)=C$ satisfies $f^{\prime}(x)=0$ (meaning that $f^{\prime}(x)$ is the zero function).
(b) Use (a) to find necessary and sufficient conditions on the coefficients a, b, c, and d to ensure that

$$
f(x)=\frac{a x+b}{c x+d}
$$

is a constant function.
(c) By polynomial division show that for $f(x)$ as in (b) we may write:

$$
f(x)=\frac{a}{c}+\frac{b c-a d}{c(c x+d)}
$$

and hence draw the same conclusion as in (b). What is

$$
\lim _{x \rightarrow \infty} \frac{a x+b}{c x+d} ?
$$

(d) Find the equation of the inverse function $f^{-1}(x)$, where $f(x)$ is as in (b).

2(a) Find a function $f(x)$ such that:

$$
f(2 x+3)=x^{2}+1
$$

Hint: we have an equation of the form $f(g(x))=h(x)$ and we want $f(x)$, so replace x by $g^{-1}(x)$.
(b) Find a linear function $f(x)=a x+b$ such that $f(f(x))=2 x+1$.
3. Find from First Principles the derivatives of the functions with the following rules:
(a) $2 x+1$;
(b) $1-x^{2}$;
(c) $\frac{1}{1+x}$.
4. Find the equations of the two tangents to the curve $y=x^{2}$ that pass through the point $(2,0)$.
5. Find the derivative of the cosine function from First Principles.
6. Prove that $f(x)=c x+d(c, d \in \mathbb{R}, c \neq 0)$ is continuous by taking $\delta=\frac{\epsilon}{|c|}$ in the definition of continuity.
7. Solve the following inequalities:
(i) $\frac{x-1}{1-3 x}>7$;
ii) $|3 x-4| \leq 20$;
(iii) $|-2(1-5 x)|>8$.
8. Given that $|x-2| \leq 3$ and $|y+2|<1$, what is the set of all possible values of $2 x+3 y$?
9. Find all values of x such that

$$
|x|+|-5 x|=10
$$

10. Solve

$$
|2 x+1|=1+|1-3 x| .
$$

