Mathematics 101 Lecture 2

1 Continuous and differentiable functions

As we said in the previous lecture, a function f(x) is continous at £ = a means
that for any € > 0 there exists d > 0 such that

|z —al <6 =|f(z) - fla))] <e. (1)

Writing « = a + h (h may be positive or negative) we may also express
continuity of f(x) at a as:
li h) — =0. 2
lim (f(a+h) — f(a)) (2)
The expression (2) suggests a connection between differentiability and conti-
nuity. Indeed differentiability is ‘continuity + smoothness’ and we shall show
in this lecture that differentiability of f(z) at a certainly implies that f(z) is
continuous at a.
Example 2.1.1 Prove that the function f(z) = x? is continuous at every
point a € R.

Let € > 0 be given. We need to find a 6 which will satisfy (1). We may
always assume that 6 < 1 for if we find a § that works for some &, then the
definition will be satisfied when we use any smaller value of 4. In general, a
suitable value of § will depend both on ¢ and on the particular function with
which you are dealing. In practice, you may not be able to tell what a suitable
value of § might be when starting the problem, so let us explore by taking § > 0
to be arbitrary for the moment and see how small the difference |f(x) — f(a)|
will be. Bear in mind that a denotes an arbitrary but fixed value of z. It is
acceptable for our choice of 4 to be dependent not only on € but on a as well
(but not on the variable z). Now, by the difference of two squares we obtain:

[f(x) = f(a)| = |2* — a®| = |(z — a)(z + a)| = |& —a| - |z + a (3)

We want to express |z + a| in terms of |z — a|, and so we try writing  + a =
x — a + 2a and see where that leads. By the Triangle Inequality we get:

|z +a|l=|r—a+2a| <|x—al+|2a] <6+ 2la] <1+ 2al.
Hence from (3) we obtain:

|f(z) = f(a)] < 6(1 + 2|al).



Since a is fixed we now only have to choose § so that § < and we have

g
142]a|
satisfied (1). This proves that f(x) = 22 is continuous at an arbitrary value

x = a, which is to say that f(z) = z? is continuous everywhere. (]
Example 2.1.2 Prove continuity of the cosine function.

Solution We use the identity cos A — cos B = —2sin T sin A+B . For any
chosen § > 0, we have —) < x — a < 4, or in other words:

lt—al<dea—-0d<zx<a+d<xz=a+hforsomeh:—§<h<d.

Hence the expression |f(z) — f(a)| in the definition of continuity may take the
form |f(a+ h) — f(a)|. In this example we obtain:

h h h
| cos(a+h)—cosal = |—2s1n§sm(a+ )| = 2|s1n—| |sin(a+—= )| < 2|s1n—| < 2| | =|h| <4

as 0 <|sinz| < |z| for all z. In particular, for a given € > 0 we may put 0 = ¢
and we arrive at
|cos(a+ h) — cosal < § =,

thereby showing that f(z) = cosz is a continuous function.

To find the derivative of the sine function (our next example) we need the
fact, proved below, that lim,_,o 22 = 1. If we take this for granted we may
solve the problem by making use of the identity:

A-B A+ B

sin A — sin B = 2sin 5 COS —5— (4)

Example 2.1.3 Find the derivative of the sine function.

Solution Working from first principles we find the limit for the derivative of
sin x evaluated at x = a. For presentational convenience we label our increment
from a as a + 2h rather than a + h. (You’ll see why.) We make use of (4) in the
expression for the numerator, as follows.

sin(a + 2h) — sina 2 sin 9t2h=a g 2at2h sinh
1 =1l 2 2 — lim — h).
fimy o pim o fim =5 cos(a+h)

We now use the fact that the limit of a product is the product of the limits, that
the cosine function is continuous, and that lim,_q S”}‘lh =1 to conclude that

d(si inh
(sinz) lo—a = lim SR i cos(a + h) =1-cosa = cosa.
dz h—0 h  h—0

In other words, the derivative of sin z is cos .



Theorem 2.1.4 )
. sinf
lim — = 1.
6—0 6

Proof Consider a unit circle and a small angle 6. Since the vertical distance
sin @ is less than the corresponding arc 6 we have sinf < . Since the area of the
unit circle is 7, the area of the sector bounded by 6 is % ST = g. On the other

hand the area of the enclosing triangle with vertical side tan 6 as shown is 222

2
All this leads to sinf < 6 < tanf. Dividing by sin 6 now gives 1 < - < L
and then taking reciprocals gives:
in 6
cosf < % <1 (5)
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This shows that (5) holds for § > 0. However, since cos(—f) = cos@ and
@ = %‘39 = Sige we see that we may replace 6 by —6 in (5) and nothing
changes, which is to say that (5) holds for all small values of 6. Finally, letting
8 — 0 we have cosf — 1. Since % is then squeezed between 1 on the right

and something approaching 1 on the left, it follows that limgy_,q Sige =10

Example 2.1.5 A function f(x) being continuous is no guarantee that f(x)
is differentiable. For example, consider the function f(z) = |z|. It is easy to
see that f(x) is both differentiable and continuous at any point x # 0. Indeed
f'(z) = £1, with the + sign applying if 2 > 0 and the minus sign applies for
negative x. Also |z| is continous as © = 0. We need only put 6 = ¢ for then
|z — 0] < ¢ says immediately that |z| < e, which gives the required conclusion
that |f(x) — f(0)] = ||x| — |0]| < e. Therefore the absolute value function is
continuous everywhere. However, the limit in the definition of derivative takes
on differing values at a = 0 depending on whether x approaches 0 from above
(we denote this by x | 0) or « approaches 0 from below, (written as x 1 0).
|z — (0] —

=lim — = —1.

—10
lim L| 9] :hmE =1, but lim
10 x z]0 X

x]0 x z]0 X



However, differentiablity does always imply continuity. This is simple to
show although we need to use one of the rules (which will all be listed in a
future lecture) that the limit of a product of two functions as x — a is the
product of the limits of the functions as x — a.

Theorme 2.1.6 If f(z) is differentiable at © = a then f(x) is continuous at
x = a. Therefore any differentiable function is continuous.

Proof We are given the existence of f’(a), which is to say that

lim flat+h) - fla) h}z — @) = f'(a). (6)

h—0

By putting = a + h, we may re-formulate (6) as

i L@ = 1@)

z—a T —a

= f'(a) (7)

Now to say that lim,_,, f(2) = f(a) is clearly equivalent to saying that
lim, . (f(z) — f(a)) = 0, which is what we now verify.

lim (f(z) — f(a)) = lim (2 — @)L= _ iy (o — g pj L& =@

T—a T—a T —a T—a T—a T —a
=0-f'(a) =0,
thereby proving that f(z) is continuous at © = a. O

Our proof that (sinz)’ = cosz is a little different from the one in most text
books. The alternative method expands the expression sin(z+ h) as sin z cos h+
coszsinh and to complete the proof you then need to evaluate the following
limit, which is our final example.

Example 2.1.7

. cosh—1
fin =5 =0 ®

Solution Since 1 = cos0 we may substitute accordingly and apply the
identity for the difference cos A — cos B to obtain:

cosh — cos0 _ —2sin(#)sin(#) _ _sin2%
h h h/2 "
cosh —1 . sink  p
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