
Mathemati
s 101 Le
ture 2

1 Continuous and di�erentiable fun
tions

As we said in the previous le
ture, a fun
tion f(x) is 
ontinous at x = a means

that for any ε > 0 there exists δ > 0 su
h that

|x− a| < δ ⇒ |f(x)− f(a))| < ε. (1)

Writing x = a + h (h may be positive or negative) we may also express


ontinuity of f(x) at a as:

lim
h→0

(

f(a+ h)− f(a)
)

= 0. (2)

The expression (2) suggests a 
onne
tion between di�erentiability and 
onti-

nuity. Indeed di�erentiability is `
ontinuity + smoothness' and we shall show

in this le
ture that di�erentiability of f(x) at a 
ertainly implies that f(x) is

ontinuous at a.

Example 2.1.1 Prove that the fun
tion f(x) = x2
is 
ontinuous at every

point a ∈ R.

Let ε > 0 be given. We need to �nd a δ whi
h will satisfy (1). We may

always assume that δ < 1 for if we �nd a δ that works for some ε, then the

de�nition will be satis�ed when we use any smaller value of δ. In general, a

suitable value of δ will depend both on ε and on the parti
ular fun
tion with

whi
h you are dealing. In pra
ti
e, you may not be able to tell what a suitable

value of δ might be when starting the problem, so let us explore by taking δ > 0
to be arbitrary for the moment and see how small the di�eren
e |f(x) − f(a)|
will be. Bear in mind that a denotes an arbitrary but �xed value of x. It is

a

eptable for our 
hoi
e of δ to be dependent not only on ε but on a as well

(but not on the variable x). Now, by the di�eren
e of two squares we obtain:

|f(x)− f(a)| = |x2 − a2| = |(x− a)(x + a)| = |x− a| · |x+ a| (3)

We want to express |x + a| in terms of |x − a|, and so we try writing x + a =
x− a+ 2a and see where that leads. By the Triangle Inequality we get:

|x+ a| = |x− a+ 2a| ≤ |x− a|+ |2a| ≤ δ + 2|a| ≤ 1 + 2|a|.

Hen
e from (3) we obtain:

|f(x)− f(a)| ≤ δ(1 + 2|a|).
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Sin
e a is �xed we now only have to 
hoose δ so that δ < ε

1+2|a| and we have

satis�ed (1). This proves that f(x) = x2
is 
ontinuous at an arbitrary value

x = a, whi
h is to say that f(x) = x2
is 
ontinuous everywhere. �

Example 2.1.2 Prove 
ontinuity of the 
osine fun
tion.

Solution We use the identity cosA− cosB = −2 sin A−B

2 sin A+B

2 . For any


hosen δ > 0, we have −δ < x− a < δ, or in other words:

|x− a| < δ ⇔ a− δ < x < a+ δ ⇔ x = a+ h for some h :−δ < h < δ.

Hen
e the expression |f(x)− f(a)| in the de�nition of 
ontinuity may take the

form |f(a+ h)− f(a)|. In this example we obtain:

| cos(a+h)−cosa| = |−2 sin
h

2
sin(a+

h

2
)| = 2| sin

h

2
|·| sin(a+

h

2
)| ≤ 2| sin

h

2
| ≤ 2

|h|

2
= |h| < δ

as 0 ≤ | sinx| ≤ |x| for all x. In parti
ular, for a given ǫ > 0 we may put δ = ε
and we arrive at

| cos(a+ h)− cos a| < δ = ε,

thereby showing that f(x) = cosx is a 
ontinuous fun
tion.

To �nd the derivative of the sine fun
tion (our next example) we need the

fa
t, proved below, that limx→0
sin x

x
= 1. If we take this for granted we may

solve the problem by making use of the identity:

sinA− sinB = 2 sin
A−B

2
cos

A+B

2
. (4)

Example 2.1.3 Find the derivative of the sine fun
tion.

SolutionWorking from �rst prin
iples we �nd the limit for the derivative of

sinx evaluated at x = a. For presentational 
onvenien
e we label our in
rement

from a as a+2h rather than a+h. (You'll see why.) We make use of (4) in the

expression for the numerator, as follows.

lim
h→0

sin(a+ 2h)− sina

2h
= lim

h→0

2 sin a+2h−a

2 cos 2a+2h
2

2h
= lim

h→0

sinh

h
cos(a+ h).

We now use the fa
t that the limit of a produ
t is the produ
t of the limits, that

the 
osine fun
tion is 
ontinuous, and that limh→0
sinh

h
= 1 to 
on
lude that

d(sinx)

dx
|x=a = lim

h→0

sinh

h
· lim
h→0

cos(a+ h) = 1 · cos a = cos a.

In other words, the derivative of sinx is cosx.
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Theorem 2.1.4

lim
θ→0

sin θ

θ
= 1.

Proof Consider a unit 
ir
le and a small angle θ. Sin
e the verti
al distan
e
sin θ is less than the 
orresponding ar
 θ we have sin θ < θ. Sin
e the area of the
unit 
ir
le is π, the area of the se
tor bounded by θ is

θ

2π · π = θ

2 . On the other

hand the area of the en
losing triangle with verti
al side tan θ as shown is

tan θ

2 .

All this leads to sin θ < θ < tan θ. Dividing by sin θ now gives 1 ≤ θ

sin θ
< 1

cos θ ,

and then taking re
ipro
als gives:

cos θ <
sin θ

θ
< 1. (5)

This shows that (5) holds for θ > 0. However, sin
e cos(−θ) = cos θ and

sin(−θ)
−θ

= − sin θ

−θ
= sin θ

θ
we see that we may repla
e θ by −θ in (5) and nothing


hanges, whi
h is to say that (5) holds for all small values of θ. Finally, letting
θ → 0 we have cos θ → 1. Sin
e

sin θ

θ
is then squeezed between 1 on the right

and something approa
hing 1 on the left, it follows that limθ→0
sin θ

θ
= 1. �

Example 2.1.5 A fun
tion f(x) being 
ontinuous is no guarantee that f(x)
is di�erentiable. For example, 
onsider the fun
tion f(x) = |x|. It is easy to

see that f(x) is both di�erentiable and 
ontinuous at any point x 6= 0. Indeed
f ′(x) = ±1, with the + sign applying if x > 0 and the minus sign applies for

negative x. Also |x| is 
ontinous as x = 0. We need only put δ = ε for then

|x − 0| < δ says immediately that |x| < ε, whi
h gives the required 
on
lusion

that |f(x) − f(0)| = ||x| − |0|| < ε. Therefore the absolute value fun
tion is


ontinuous everywhere. However, the limit in the de�nition of derivative takes

on di�ering values at a = 0 depending on whether x approa
hes 0 from above

(we denote this by x ↓ 0) or x approa
hes 0 from below, (written as x ↑ 0).

lim
x↓0

|x| − |0|

x
= lim

x↓0

x

x
= 1, but lim

x↑0

|x| − |0|

x
= lim

x↓0

−x

x
= −1.
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However, di�erentiablity does always imply 
ontinuity. This is simple to

show although we need to use one of the rules (whi
h will all be listed in a

future le
ture) that the limit of a produ
t of two fun
tions as x → a is the

produ
t of the limits of the fun
tions as x → a.

Theorme 2.1.6 If f(x) is di�erentiable at x = a then f(x) is 
ontinuous at
x = a. Therefore any di�erentiable fun
tion is 
ontinuous.

Proof We are given the existen
e of f ′(a), whi
h is to say that

lim
h→0

f(a+ h)− f(a)

h
= f ′(a). (6)

By putting x = a+ h, we may re-formulate (6) as

lim
x→a

f(x)− f(a)

x− a
= f ′(a) (7)

Now to say that limx→a f(x) = f(a) is 
learly equivalent to saying that

limx→a(f(x)− f(a)) = 0, whi
h is what we now verify.

lim
x→a

(f(x) − f(a)) = lim
x→a

(x − a)
f(x)− f(a)

x− a
= lim

x→a
(x − a) lim

x→a

f(x)− f(a)

x− a

= 0 · f ′(a) = 0,

thereby proving that f(x) is 
ontinuous at x = a. �

Our proof that (sinx)′ = cosx is a little di�erent from the one in most text

books. The alternative method expands the expression sin(x+h) as sinx cosh+
cosx sinh and to 
omplete the proof you then need to evaluate the following

limit, whi
h is our �nal example.

Example 2.1.7

lim
h→0

cosh− 1

h
= 0. (8)

Solution Sin
e 1 = cos 0 we may substitute a

ordingly and apply the

identity for the di�eren
e cosA− cosB to obtain:

cosh− cos 0

h
=

−2 sin(h−0
2 ) sin(h+0

2 )

h
= −

sin2 h

2

h/2
.

∴ lim
h→0

cosh− 1

h
= − lim

h→0

sin h

2

h/2
· lim
h→0

sin
h

2
= −1× 0 = 0.
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